RO 000 O T 0
: US005485601A

United States Patent [

(11 Patent Number: 5,485,601

Ching 1451 Date of Patent: Jan. 16, 1996
[54] COMPLETELY AUTOMATED AND [57] ABSTRACT

SELF-GENERATING SOFTWARE SYSTEM

A completely automated software, firmware, and/or hard-

[76] Inventor: Hugh Ching, PO. Box 461, Berkeley, ware system capable of self-generation and auto-updating,

Calif. 94701 designed to be independent of computer technology and to

never become obsolete as computer technology changes. A

. system in which all the software programs are generated by

(211 Appl. No.: 232,450 feeding problem specification files, which can be handled

[22] Filed: Apr. 21, 1994 automatically, and, thus, can be updated and documented by,

the computer, into program generators, which communicate

Related U.S. Application Data with users in human language. The initial self-generating

generators which have their own specification files and can,

[63] Continuation-in-part of Ser. No. 882,672, May 14, 1992, therefore, generate themselves. A self-generating software

abandoned. system or cell, which will enable multicellular designs using

[511 Int. CLS GO6F 17/50 external common files, comprises (1) programs; (2) genera-

[521 US.CL 395/500; 395/700 tors; (3) specification files, which are the recordings of the

[58] Field of Search ... 305/12, 922, 500, ~ €Xact keystrokes in answering tree-structured multiple-

395/700 choice and text questions posed by specification generators;

and (4) full sets of subroutines, which are produced auto-

[56] References Cited matically, can generate instructions, can document and

update specifications, and can be transported from genera-

U.S. PATENT DOCUMENTS tors to generators by selective copying, chaining, and/or

4841,441 6/1989 Nixon et al. .oomresrrrsorn 3050922 ~ merging. By following the flow of the tree-structured mul-

5:038:296 8/1991 Sano 395/922 tiple-choice questions, a user no longer needs to commit to

5,084,813 1/1992 Ono 395/922 memory any technical information, such as addresses, for-

5,159,687 10/1992 RicChDULEoveveunererenersenrennes 395/922 mats, keywords, etc. In particular, by presetting a flag in the

5,216,592 6/1993 Mamn et al. ...ccvirirvcnrcrecnnenes 395/922 program generator, not only can the generator generate

OTHER PUBLICATIONS instructions, but it can also generate instructions which can

Fischer et al., “Knowledge-Based Spreadsheets,” Proceed-
ings AAAI-88, Aug. 21-26, 1988, pp. 802-807.

Kaiser et al., “Intelligent Assistance for Software Develop-
ment and Maintenance,” IEEE Software, 1988, pp. 40-49.

Primary Examiner—William M. Treat
Assistant Examiner—Richard L. Ellis

generate instructions, thus, allowing future generated gen-
erators to generate instructions, and also instruction gener-
ating instructions. The self-generating software system is
completely automated, can self-generate to infinity, and has
a structure similar to the DNA-protein system of the living
organism.

4 Claims, 4 Drawing Sheets

() M-N; (2) O-P: (3) QR?
2

INPUT VARIABLE NAME ?
X

GOSUB 64500

INSTRUCTION
GENERATING SET {(IGS):

64500 N§="64500":
[FFLAG=0 THEN PRINT
#1,"PRINT "+AS:RETURN
64502 IF FLAG=1 THEN
PRINT #1, "GOSUB "+NS
64504 IF FLAG 1 THEN
65100 ELSE RETURN

ORIGINAL SELF-GENERATING SOFTWARE SYSTEM (S551)
{ALPHABETICALLY ARRANGED BY MANUFACTURER) 1

EI:IOOSE ‘ONE OF THE FOLLOWING NUMBERS:
(1) A-H: (2) I-L; (3) M-R; (4) §-Z; (5) SET FLAGS; (6) EXIT ?
3

CHOOSE ONE OF THE FOLLOWING NUMBERS:

CHOOSE ONE OF THE FOLLOWING NUMBERS:
(1) ON; (2) OPEN: (3) PRINT STRING: (4) PRINT VARIABLES:
a

(TO BE CONNECTED TO IGS. DGS, OR UGS2)

SPECIFICATION
GENERATING
SECTION

UPDATE
GENERATING
SET (UGS2)

~N

65000 PRINT
#2171.1.2"
AS:RETURN
(UPDATE
3,2.4,TO
L1L2)

CHOOSE ONE QF THE FOLLOWING NUMBERS:
(1) PRINT; (2) INPUT: (3) CALCULATE;

{4) FILES: (5) SET FLAGS: (6) EXIT ?

1

CHOOSE ONE OF THE FOLLOWING NUMBERS:
(1) PRINT ON SCREEN: (2) PRINT ON PAPER ?
1

CHOOSE ONE OF THE FOLLOWING NUMBERS:
(1) PRINT STATEMENT: (2) PRINT VARIABLE ?
2

INPUT VARIABLE NAME ?

X
GOSUB 64500

GENERATED SELF GENERATING SOFTWARE SYSTEM
(5552: IN HUMAN LANGUAGE: WRITTEN BY SSSI)

(TO BE CONNECTED TO IGS, DGS. OR UGS

CF-EXTERNAL
COMMON FILE
ACCESSIBLE
BY BOTH S§51 AND
5552: BOTH
2 CAN UPDATE 3
DATA IN THE -
FILE, SUCH AS THE
NAME OF THE
GENERATED
PROGRAM

AND OTHER
CONTROL FEATURES
FOR SEMI-
CONSERVED
REGENERATION

U.S. Patent Jan. 16, 1996 Sheet 1 of 4 5,485,601

1 SPECIFICATION GENERATING SET 9
$8S1 SF
ORIGINAL
SELF-GENERATING SOFTWARE SYSTEM SPECIFICATION
(ALPHABETICALLY ARRANGED) FILES
(PROVIDED BY THE MANUFACTURER)
EACH OF THE SETS BELOW IS APPENDED
TO $SS1 ABOVE TO FORM A GENERATOR.
— _ . - _ - -
4 ns S s 6 Dpcs 7 ucs2 8 wuasI
NULL INSTRUCTION DOCUMENT UPDATE | _ .. UPDATE
SET GENERATING GENERATING | | GENERATING GENERATING
. SET SET SET SET
64500 RETURN FOR SSS2 FOR SSSI
14 15 16 17 18
= sc = pg = bpo == ue2 == var
SPECIFICATION PROGRAM DOCUMENT UPDATE | UPDATE
GENERATOR GENERATOR GENERATOR GENERATOR GENERATOR
2 . 3
& SPECIFICATION GENERATING SET
$852 CF
SELF-GENERATING SOFTWARE SYSTEM EXTERNAL
(IN HUMAN LANGUAGE)
(WRITTEN USING $SS1) COMMON FILES

FIGURE 1

U.S. Patent Jan. 16, 1996 Sheet 2 of 4 5,485,601

ORIGINAL SELF-GENERATING SOFTWARE SYSTEM (SSS1)

(ALPHABETICALLY ARRANGED BY MANUFACTURER) 1

CHOOSE ONE OF THE FOLLOWING NUMBERS: Z‘;%%TACT‘;&ON

(1) A-H; (2) I-L; (3) M-R; (4) S-Z; (5) SET FLAGS: (6) EXIT ? SECTION

3

CHOOSE ONE OF THE FOLLOWING NUMBERS:

(1) M-N; (2) O-P; (3) Q-R?

2

CHOOSE ONE OF THE FOLLOWING NUMBERS:

(1) ON; (2) OPEN; (3) PRINT STRING; (4) PRINT VARIABLES:

4

INPUT VARIABLE NAME ?

X

GOSUB 64500

. (TO BE CONNECTED TO IGS, DGS, OR UGS2)
INSTRUCTION UPDATE
GENERATING SET (IGS); ‘égﬁgﬁ‘fﬁg GENERATING
fe SET (DGS) SET (UGS2)
64500 NS="64500": . 6 ..
IFFLAG=0 THEN PRINT 55000 = 65000 PRINT
#1, "PRINT "+AS:RETURN LPRINT #21"1,12";
PRINT #1, "GOSUB "+N$ VARIABLE": (UPDATE
64504 IF FLAG 1 THEN | ASRETURN 3,2,4, TO
65100 ELSE RETURN 1L1.2)
GENERATED SELF GENERATING SOFTWARE SYSTEM CF-EXTERNAL
(SSS2: IN HUMAN LANGUAGE; WRITTEN BY SSS1) COMMON FILE
CHOOSE ONE OF THE FOLLOWING NUMBERS: ACCESSIBLE
(1) PRINT; (2) INPUT; (3) CALCULATE: BY BOTH SSS1 AND
(4) FILES; (5) SET FLAGS:; (6) EXIT ? $SS2; BOTH
1 2 CAN UPDATE 3
CHOOSE ONE OF THE FOLLOWING NUMBERS: £ DATA IN THE =
(1) PRINT ON SCREEN; (2) PRINT ON PAPER ? FILE, SUCH AS THE
1 NAME OF THE
CHOOSE ONE OF THE FOLLOWING NUMBERS: GENERATED
(1) PRINT STATEMENT; (2) PRINT VARIABLE ? PROGRAM
2 AND OTHER
INPUT VARIABLE NAME ? CONTROL FEATURES
X FOR SEMI-
GOSUB 64500 CONSERVED

(TO BE CONNECTED TO IGS, DGS, OR UGSI) REGENERATION

FIGURE 2

U.S. Patent Jan. 16, 1996 Sheet 3 of 4 5,485,601

SPECIFICATION FILE #1 FOR 1ST PASS (CREATED BY USER)

SPECIFICATION FILE #2 FOR 2ND PASS (GENERATED FROM #1)

SPECIFICATION FILE #3 FOR 3RD PASS (GENERATED)

ALL (GENERATED)

SPECIFICATION FILE #N FOR THE LAST PASS

A
¢vvv A

SPECIFICATION GENERATOR (SSS) +
SPECIFICATION GENERATING SET OR 3 1
INSTRUCTION GENERATING SET (IGS)

Y

\ 4 __» | MACHINE INSTRUCTIONS OR
SOURCE CODE (ORDNA) 32

FIGURE 3

U.S. Patent Jan. 16, 1996 Sheet 4 of 4 5,485,601
= | NUMBERED WINDOWS 41 | <[>
$8S1__| RECORDING SPECIFICATONS: 42 | YES | NO | FILENAME: DEMO
1.A-H [211 3M-R | 45Z 43 | 5SETFLAGS | 6 ExIT

L.MN
2.0-P 4 | LoN
3.QR 2. OPEN
3.PRINTSTRING 45
4. PRINT VARIABLES
ACTION BOX
INPUT VARIABLE NAME ? 46
X
SPECIFICATIONS: 47 234 241FILEl 242FILE2 324X
A=AUTO B=BACKSPACE INS=INSERT DEL=DELETE ?=HELP A
F1=QUIT AUTO J-JUMP ESC=QUIT 48 \V/

FIGURE 4

5,485,601

1

COMPLETELY AUTOMATED AND
SELF-GENERATING SOFTWARE SYSTEM

This is a continuation of application Ser. No. 07/882,672,
filed 1992 May 14.

This is a continuation-in-part application of Ser. No.
07/882,672, filed May 14, 1992, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention deals with a computing device or
system. In particular, it deals with a completely automated
software system, or any device of the same principle. In
practice, through self-generation and automatic updating
from old to new versions, the software systems in this
invention can become independent of computer technology
and, thus, will never become obsolete when the technology
changes. Henceforth, we shall use software, software pro-
gram or software system to mean device or system made of
software, firmware, and/or hardware.

2. Background of the Invention

Currently, software programs are dependent on computer
technology. When the computer hardware system, the oper-
ating system, and/or the computer langnage change, the
software programs written under these systems often
become obsolete. In general, all today’s software programs
sooner or later will become obsolete, for computer technol-
ogy will surely continue to change. Because designers of
software systems in the past did not or could not take into
consideration the future upgrading of software, today there
is a crisis of software maintenance, in which most of the
money and energy for software (as high as 80% of the total
budget) is spent on updating and maintaining old software.
And, the closer a software system is to obsolescence, the
costlier it is to be maintained. The situation can only get
worse. It should also be noted that upgrading from one
technology-dependent software system to another technol-
ogy-dependent system is not the correct solution for soft-
ware.

Furthermore, in order to use a computer, an end-user or a
software developer has to learn the necessary computer
language and technologies, which create a barrier between
people and the computer. This invention intends to eliminate
technical information in computer usage and to make the
communication between the computer and its users, includ-
ing all software developers and hardware designers, exclu-
sively in human languages. This software system becomes
independent of technology through self-generation and auto-
updating. Auto-updating allows a system, in principle, to be
upgraded to systems of virtually unlimited complexity, such
as those needed to sustain evolutionary life.

The main purpose of the computer and its software is to
automate and speed up manual processes. However, com-
puterization generally can only achieve partial automation.
From a theoretical point of view, this invention is designed
to be a completely automated software system and is con-
ceptually closer to the living organism, which is totally
automated, than to the non-living technology of the twen-
tieth century, even though this invention is discovered for
software independent of the structure of the living organism.
This invention could provide a new and common foundation
for computer science and theoretical biology.

The fundamental concept of this invention is that although
no material device can last forever without deterioration,
information through automatic regeneration is theoretically

10

15

20

25

35

40

45

50

55

60

65

2

possible to exist unaltered permanently as exemplified by
the propagation of DNA in living organisms. Thus, the
primary concern of this invention is to achieve full and
complete automation in an information system consisting of
computer software.

This invention proposes to create an information system
in the form of software intended to last to infinity, even with
the possibility of evolutionary changes. Not only is it true
that such a permanent system cannot be experimentally
tested, it faces the added difficulty that mistakes or bugs in
the system may have to be traced back to the infinite past.
A prime example relating to infinity in time is the study of
the evolution and the origin of life. From a theoretical point
of view, life can be defined as information stored in a
permanent format or simply as permanent information.

Accordingly, this invention is beyond the field of knowl-
edge covered by physical science, which generally studies
physical phenomena occurring within finite time intervals
and, therefore, can rely largely on experimentation and
empirical verification. Physical science is important in the
selection of a suitable medium for storing the information of
this invention, be it electrical, mechanical or chemical. The
invention, which actually tries to create something that will
last forever, is also outside the scope of social science, which
deals with behavior or decision making and, thus, requires
the consideration of only the expected consequences of an
action to the infinite future. In general, many important
results in social science, such as decisions and prices, both
of which involve the infinite future, are not empirically
verifiable simply because the infinite future will never
arrive. The never ending self-generation of software in this
invention also involves infinity in time, and social science
will be needed to consider its consequences.

In conclusion, physical science involves finite time, social
science involves time to the infinite future, and life science,
a field to which this invention belongs, both the infinite
future and the infinite past. In terms of human progress, this
invention has surpassed the current culture dominated by
physical science and even the hitherto still questionable
knowledge in social science; it has brought us into the field
of life science, the fundamental principles of which defy
materialistic interpretations, and the point of view of which
seems to contradict that of physical science. This invention
has entered into a very advanced area of post-scientific
knowledge.

OBJECTS AND ADVANTAGES

The advantages of the completely automated software
system can be understood from a comparison of the concepts
in this invention and those in the existing software systems
and, in particular, from the exposition of the conceptual
flaws of past generations of computer software.

In a completely automated self-generating software sys-
tem, all the programs are generated programs, which can be
automatically documented, modified, and updated through
the process of regeneration. Technically, the software system
can be regenerated by feeding specification files of the
programs to be generated into program generators. The
specification file is simply a data file which records the exact
keystrokes inputted into a specification generator. The speci-
fication file is readily understood by its corresponding
generators so that the file can be automatically updated. The
program generators and specification generators must them-
selves be generated programs with corresponding specifica-
tion files. Thus, all software programs in a completely

5,485,601

3

automated self-generating software system are generated
programs, each with its own specification file.

The specification generator poses tree-structured mul-
tiple-choice questions to the user. The answers to these
questions are recorded in the specification file. When the
questions are in human language, the question and answer
approach in the software system allows people without
knowledge of programming to write programs. On the other
hand, the program generator, the update generator, and the
document generator can automatically handle the specifica-
tion file created by the specification generator. Regeneration,
updating, and documentation can, thus, be carried out auto-
matically by the computer. Software will become the domi-
nant form of knowledge only when knowledge experts
without the knowledge of computer technology can interact
easily with the computer and when the software produced
will not become obsolete.

The requirement that all the programs in the software
system are generated programs implies that one initial
program or an initial group of programs must be able to
generate itself. The self-generating property is the essential
feature of this invention. There are two major problems in
software. They can be characterized as the communication
difficulty among programmers, which is the problem of
insufficient documentation, and the communication diffi-
culty among programs, which is the problem of updating and
obsolescence. Specification files are used to solve these
problems by permitting automatic documentation and updat-
ing. Self-generation automates software completely. Obso-
lescence becomes a serious problem and is always possible,
even if one initial, or any, generator does not have a
specification file and, thus, cannot be regenerated or updated
by the computer.

What should be the design criteria of software systems?
For the completely automated software system, as well as
the living organism, the most important design criterion is
permanence, for the value—a subject in the domain of social
science—of a permanent object should be infinitely higher,
or lower, than the value of a similar object with only a
temporary life. Another obvious requirement for the purpose
of software development is understandability, or friendli-
ness, to the user. Here communication between the computer
and its users is most preferably in the already existing human
languages.

What are the design criteria of the past and present—from
the first to the sixth—generations of computer languages
based on which all other software programs are written?
Generally, all the current software systems are only partially
automated possibly because the concept of permanence, or
of complete automation, has not occurred to software
designers and, therefore, has not been one of their design
criteria. The first generation language or software consisted
of machine instructions which are difficult for users to
remember. Trying to remedy the defect of the machine code,
the second generation languages in the form of assemblers
first introduced fifty years ago the fatally flawed concept of
the source code, which is supposedly a straightforward, yet
harmless, idea of mnemonic representation of the machine
instructions. Automating the translation of the source code
with compilers was the first step in the wrong direction for
software. The compiler, corresponding to, but unlike, the
program generator of the completely automated software
system, is not understandable, or even visible, to the user.
The generators of this invention, on the other hand, express
itself in human language consisting of multiple-choice and
text questions. The source code is a poor form of program
documentation, and, most importantly, it is impossible to be

10

15

20

25

30

35

40

45

50

55

60

65

4

automatically updated because the formats of the future or
destination source codes are unknown.

The complete automation of software depends on auto-
matic updating. The specification file (or DNA) can have its
update or conversion program, which updates the specifi-
cation file of one generator (or language) to another, be
written even before the future generators are created. That is
that the specification files can be automatically updated if
the formats of the system always follow that of the same
tree-structured multiple-choice and text questions. The con-
clusion that the format of the permanent information is
unique is supported by the observation that the completely
automated self-generating software system, which repre-
sents the most primitive form of a permanent information
system, and the DNA and protein system of the living
organism, which could be the most advanced permanent
information system, are fundamentally similar in design.
The format based on tree-structured multiplechoice ques-
tions could be the only logical interface for communication
between the human and the machine. The realization that
there is only one unique way to represent permanent infor-
mation could be one of the most significant discoveries in
knowledge, for it provides the possibility for auto-updating
and, thus, the foundation for creating systems of unlimited
complexity, such as those found in life science. Automatic
documentation is also possible when the format is unique.

The third generation languages, such as FORTRAN,
COBOL, BASIC, C, ADA, LISP, C++, etc., follow the
tradition of mnemonic representations of the machine
instructions and their translation to machine instructions
using compilers. They also introduced the concept of divid-
ing the computer language into the machine-independent
source code and the machine-dependent compiler. The
design of the source code, which was intended to make it
more understandable to the user than to the machine, suffers
the additional defect of using fixed keywords which require
standardization, a major hindrance to software progress. The
completely automated software system, on the other hand,
does not require users to remember technical information,
such as keywords, addresses, etc., which could become
unlimited in number. Technical knowledge exists as an
unnecessary barrier to the automation of knowledge. In fact,
a whole industry and a new academic division have sprung
up to take advantage of this original faulty design in com-
puter software. In a technically similar, but conceptually
different, design of the compiler, the completely automated
software system stores almost all the technical information
in an instruction generating set, which is generally trans-
ported without the need of knowing its internal structure, as
ribosomes are partitioned during cell divisions, and can only
be created or modified by the original manufacturer of the
system.

The fourth generation languages or CASE (Computer
Aided Software Engineering) attempt to make the computer
communicate with users in human languages. Unfortunately,
the complex human-language software systems have, thus
far, defied standardization with mechanical precision. Users
of CASE tools and object-oriented software systems are
trapped in the standards of the companies which created
them when there are no public standardization committees,
which need to exist permanently to uphold the integrity of
the standards. Automatic update and self-generation elimi-
nate the necessity of software standardization.

Japan’s fifth generation software, which tries to make
human language understandable to the computer, has been
declared bankrupt recently. Japan’s sixth generation soft-
ware dealing with robotics is still contradictory to the

5,485,601

5

fundamental concept of permanence and to the living tech-
nology represented by the living organisms and the com-
pletely automated software system, which can be considered
the last generation software and the first generation life
science. In conclusion, the existing computer languages,
which are based on the source code and the compiler, violate
the fundamental principle of a permanent information sys-
tem which requires that the machine should only be allowed
to handle simple machine languages and the user should
only deal with human languages. Ever since the computer
language was first invented fifty years ago, it has followed
the mistaken trend of making the source code increasingly
understandable to the user, doing a double duty of commu-
nicating with both the computer and the user (program
listing); the correct design should make the source code, as
the specification file, easily controllable by the computer and
the compiler, as the program generator, communicate with
the user in the human language.

The completely automated self-generating software sys-
tem should immediately revolutionize software, because it
requires existing software to be rewritten into technology-
independent, non-obsolescent, permanent software; yet, its
true value will not be fully realized until our own quest to
create life reveals—from our own design criteria—the pur-
pose of our existence.

SUMMARY OF THE INVENTION

This invention deals with software which will never
become obsolete. Once written, this non-obsolescent soft-
ware will never need to be rewritten, for the software can be
automatically updated by the computer when the computer
technology changes. In fact, the non-obsolescent software
programs form a complete interrelated system, which as a
whole can never become obsolete.

The computer industry is thus far controlled by standards.
The self-generating software system eliminates software
standards through mainly auto-updating of specification
files. The self-generating capability will allow software
systems to be translated to any computerized human lan-
guage. Thus, the entire educated population of the world will
be able to used the computer without learning a dominant
human language or computer technology.

Ultimately, all current non-self-generating software sys-
tem should be written or rewritten as parts of permanent

self-generating software systems, so that they will not need-

to be written again. All the high-level computer languages
will gradually become unnecessary, since machine language
will be generated directly. Human language is used in the
specification generator for communication between the
computer and users, which include software developers.

The key to the success of the self-generating software
system is in separating as much as possible the problem
specification from computer technology. The complete sepa-
ration is made possible through self-generation. Most impor-
tantly, being possibly the first man-made item designed to
last forever, the completely automated self-generating soft-
ware system, corresponding to the DNA and protein system
of the living organism, represents a crucial step in bridging
the gap between the non-living machines of the twentieth
century and the living organisms. We are so fond of the
computer because it is so similar to ourselves. The self-
generating cell technology will try to make the computer be
more like us, extending self-generation to include self-
creation, and will demonstrate the feasibility of a living
technology.

10

15

20

25

35

40

45

50

55

60

65

6

The technical novel features of a completely automated
self-generating software system are self-generation, auto-
updating, auto-documentation, and the necessary compo-
nents of a self-generating software system.

It is an object of the present invention to provide the
method for constructing self-generating specification gen-
erators, self-generating program generators, auto -document
generators, and a auto-update generators.

1t is another object of the present invention to provide the
necessary combination of software parts to achieve a com-
pletely automated self-generating software system.

Other objects and advantages of the present invention will
become apparent when the invention is explained and illus-
trated below in actual software and system terminologies.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an overview of the
components and the interrelationship of a system exempli-
fying the present invention.

FIG. 2 is a block diagram illustrating certain essential
elements of the system of FIG. 1 in the performance of some
particular specification generation through answering tree-
structured multiple-choice questions, program generation,
specification documentation, and specification updating
functions, exemplifying the primary operations of the inven-
tion.

FIG. 3 is a flow diagram showing the multiple-pass
generation from multi-level specification files, passing
through specification and program generator to generate
programs in machine instructions or source code, exemplify
the multi-level nature of the invention.

FIG. 4 is a sample user interface and a prototyper for
developing user interfaces showing the tree-structured mul-
tiple-choice questions in a windows format allowing alter-
native modes of input, such as mouse clicking, touch screen
pointing, and voice, exemplifying a preferred user interface
of this invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

While FIG. 2 gives the essential functions of the inven-
tion, FIGURE 1 presents an easy overview of the invention
and, in particular, the relationship of all the components of
the invention. They should be viewed together.

Initially, an user is provided by a manufacturer or an
original software developer with an original specification
generating section 1 and an instruction generating set 5. A
program generator 15 can be constructed by appending the
set 5 to the section 1. In addition, the user is generally
provided with specification files 9 of the set 5, the generator
15, a null set 4, a document generating set 6, a updating
generating set 8 or UGSi where i=1 corresponding to the
section 1, and an external common file 3, which permits
semi-conserved self-generation. The specification file for the
section 1 is included in the generator 15, which includes, in
addition to the specifications of the section 1, specifications
for automatically appending the set 5 to the section 1.

In particular, the specification file 9 of the generator 15
when fed into the generator 15 will self-generate the gen-
erator 15. Similarly, the specification files 9 of the sets 4, 5,
6, and 8 will generate the sets 4, 5, 6, and 8 respectively
when their specification files 9 are fed into the generator 15.
A specification generator 14 can be constructed by append-
ing the null set 4 to the section 1. Similarly, a document

5,485,601

7

generator 16 and a update generator 17 can be constructed
by appending respectively the sets 6 and 7 to the section 1.

The null set 4 as shown in FIG. 1 contains simple
RETURN instructions which will allow the specification
generator 14 to just create specification files without gener-
ating programs. The self-generating specification file of the
program generator 15 will permit users to easily change the
screen display of the section 1 in FIG. 2 to their own native
languages or to formats which they prefer. The specifications
generated by the specification generator 14 are stored in the
specification file 9, which can be called by the specification
generator 14 for modification, by the program generator 15
for program generation, by the document generator 16 for
generating documentation, and by the update generator 17
for updating to specifications for another specification gen-
erating section, such as a generated specification generating
section 2.

The document generating set 6 and the update generating
sets 7 and 8 can generally be constructed by users using the
program generator 15 supplied by the manufacturer, who
generally also supply initial versions of the sets 6 and 8,
where i=1, and/or the specification files of the sets 6 and 8.

The main functions of the self-generating software sys-
tems in FIG. 1 are illustrated in the sections 1 and 2 in FIG.
2. These functions mainly consist of posing multiple-choice
questions in a tree structure, which create specifications and
lead to a subroutine calling instruction, such as GOSUB
64500, calling a subroutine in the instruction generating set
5 or any of the other sets 6 and 7 in FIG. 2. The subroutine
at instruction 64500 in the instruction generating set 5 in
FIG. 2 will facilitate the output of a program instruction
PRINT X when the FLLAG is set at the default value of 0, will
generate the instruction generating instruction GOSUB
64500 when FLAG has been preset to 1, and will generate
instructions, such as 64500 LPRINT “LPRINT THE VARI-
ABLE”;A$:RETURN as shown, for the document generat-
ing set 6 in FIG. 2 when the FLAG has been preset to 2. The
exact procedure of generating the updating generating set 7
in FIG. 2 and the proper usage of the generator 17 are
somewhat involved and will be described in the following
paragraph.

In FIG. 2, to generate the instruction, 64500 PRINT #2,
“1,1,2”;A$:RETURN, in the update generating set 7, the
specification generating section 2 has to be written first
using the program generator 15 made of the section 1 and the
set 5. When the section 2 is combined with the set § and the
FLAG is preset to 3, typing specifications, 1, 1, 2, Enter will
generate the above instruction in the set 7. This updating
capability has been constructed into the instruction gener-
ating set 5. Conceptually, it is very important for under-
standing this invention to note that the information of the
address number 64500 (Note: N$=64500" in instruction
64500 of set 5) and the specifications 1, 1, 2 are all available
for constructing the updating instruction 64500 PRINT#2,
“1,1,2”;A$:RETURN by the set 5. The update generator 17
in FIG. 1 is constructed for updating specification files for
the original (or any other) specification generating section 1
to the specification files for the generated section 2. The
proper procedure for updating from section 1 to section 2 is
to append the update generating set 7 to the section 1 (or any
other section except 2), since only the source section 1 can
understand the source specification, such as 3, 2, 4, X as
shown in section 1. In particular, it should also be of great
practical interest to realize that the self-generating specifi-
cation file for section 2 can be obtained by automatically
updating the specification file created by the section 1 to the
specification file for section 2 using the update generator 17

10

15

20

25

30

35

40

45

50

55

60

65

8

consisted of the section 1 and the set 7. In other words, once
the new section 2 is written using the generator 15 made of
the section 1 and the set 5, there is no need to rewrite the
self-generating specification file for section 2 using the new
generator formed by the section 2 and the set 5.

Both generators 15 for sections 1 and 2 can self-generate.
However, to self-generate semi-conservatively (i.e. with
some alteration from the parents), the external common file
3 is needed. It is initially provided by the manufacturer but
can be easily, and creatively, modified or constructed by the
user. The ramifications of semi-conserved self-generation,
such as evolutionary regeneration, mutation, differentiation,
etc., is beyond the scope of this invention, but could offer
some of the most rewarding areas for future research.

The description of the structure and the functions of a
completely automated self-generating software system must
include the multiple-pass generation and the multi-level
documentation and update of specifications. Examples of
different levels of representation are objects in object-
oriented programming, reusable subroutines or functions,
macro problem specifications, source codes, and machine
codes, etc. with machine codes being the lowest level of
representation. As illustrated in FIG. 3, high-level codes
must pass through the specification generator plus specifi-
cation generating set or instruction genera thug set 31 to
finally be reduced down to the lowest level represented by,
for example, machine or source code (or DNA) as shown in
32 of FIG. 3. The specification generators in generator 31 are
created by the user patterning after the structure of the
instruction generating set 5 of FIG. 2. Here the specification
file for the instruction generating set 5 from the manufac-
turer of the system could be of great help. The program
generation described by systems 31 and 32 are top down. As
shown in FIG. 3, only specification file #1 is created by the
user; the specification files at all other levels are generated.

The documentation of the specification files at any level
of representation can be in any order, top down, bottom up
or mixed. The updating of the specification files is bottom up
and is automatic. Auto-updating involves the creation of
new updating generators. The auto-update programs are
automatically created. First, the self-generating specification
file for the old generator is updated to the new generator.
Then, the specification files for all the other application
programs, functions, modules, macro codes, reusable codes,
objects, etc. for the old generator are updated. The operation
of the multi-level system will follow the same principles as
that of the single-level system outlined above in this inven-
tion.

FIG. 4 shows the original specification generator section
1in FIG. 2 in its windows format. At the top of the windows
display, the first line 41 shows the words NUMBERED
WINDOWS, which is an appropriate name for this type of
windows, since here all the choices in the windows are
numbered. The second line 42 shows SSS1 as the name of
the specification generating section 1, whether the specifi-
cation is being recorded or not, and DEMO, the file name
under which the specification file is being saved. The third
line 43 is first of the three layers of the tree-structured
multiple-choice questions. Under 3. M-R on line 3 is the
pull-down second multiple-choice question 44 displayed
vertically after 3 is chosen for the first question. After 2 is
chosen for the second question, the third multiple-choice
question 45 is shown as a pull-right vertical display.

The lower half or FIG. 4 shows the Action Box 46, which
poses text question(s). It should be noted that in order for the
automatic handling by the computer, the answers to the text

5,485,601

9

questions are treated as items without regard to their internal
structures. Below the ACTION BOX 46 is the display 47 of
the inputted specifications, the most recent of which is at the
most right. The bottom two lines shows the abbreviated
explanations of the available editing features for the system
SSS1. Due to the self-generating capability of SSS1, FIG. 4
can also be considered a prototyper for developing user
interfaces in a windows format which will allow alternative
modes of input, such as mouse clicking, touch screen
pointing, and voice, etc.

The novel and subtle points of the internal working of the
systems, generators, files, and sets, etc. of this invention are
further illuminated by actual codes in the BASIC computer
language. It should be noted that although this invention
exposes the fatal flaws in source code and compiler systems
of computer languages, the source codes in this invention
will be treated as machine codes because through self-
generation the source codes will become invisible to the
user. The BASIC language, being English-like and an inter-
preter, which simulates machine instructions, provide a
useful bridge between the current software systems and the
completely auntomated software system, since the back-
ground operation is totally transparent to the user. In general,
self-generation can make not only any computer language,
but also any self-generating program generator in this inven-
tion invisible to the user. The capability to eliminate any
technological information or any undesirable features
through self-generation is also responsible in making all
computer languages equivalent to the machine language,
which is an acceptable, but tedious, format for this inven-
tion.

A computer program is a set of instructions to the com-
puter. A program is written here by answering a series of
multiple-choice and text questions, which are structured like
a tree. For example, the first multiple-choice question may
be:

*(1) Print and Input; (2) Calculate; (3) Branching; (4) Files;
(5) Special features; (6) Exit?

Typing a number will bring the user to the next multiple-

choice question (These questions can be modified by the

user due to the self-generating capability of the program.).

The answers to these questions (or the exact keystrokes) are

the specifications and are recorded in specification files,

which can be used later.

The following is a sample of the program instructions in
BASIC used to construct the system:

1 OPEN “O”,I,“SAMPLE. BAS”

2 FLAG=0:REM FLAG=0 is for genera thug an instruc-
tion. FLAG=I1 is for generating an instruction generating
instruction.

3 INSTRUCTION__NUMBER=INSTRUCTION_ _NUM-
BER+1:INSTRUCTION_NUMBERS$=STR$(IN-
STRUCTION__NUMBER)

4 PRINT“*(1) Print and Input; (2) Calculate; (3) Branching;
(4) Files; (5) Set flag for generating instruction generating
instruction; (6) Exit?”

6 INPUT A

8 ON A GOTO 10000,20000,30000,40000,50000,60000

10000 PRINT ““(1) Print a statement on screen; (2) Print a
statement on paper; (3) Input into a variable?”

10004 INPUT A

10006 ON A GOTO 11000,12000,13000

11000 PRINT “(1) Print a statement on screen with a
carriage return; (2) Print a statement on screen without a
carriage return; (3) Print a blank line on screen?”’

11004 INPUT A

11006 ON A GOTO 11100,11200,11300

10

20

25

45

50

55

60

65

10

11100 PRINT “What is your statement?”

11102 INPUT A$

11104 GOSUB 62000

11106 GOTO 2

50000 FLAG=1

50002 GOTO 4

60000 CLOSE: CHAIN “SAMPLE.BAS”: END

62000 IF FLAG=0 THEN PRINT #1,INSTRUCTION__

NUMBERS$+ ‘PRINT”+A$ ELSE PRINT #1, INSTRUC-

TION_NUMBER$+“GOSUB 62000
62002 RETURN

The above instructions are mostly self-explanatory, if the
reader is familiar with BASIC. They are just parts of the
complete self-generating program. The technical details are
further explained in the following.

In the above sample program, the user can generate a
instruction to print an instruction (“test”) on the screen with
a carriage return by typing the specifications 1, (Enter), 1,
(Enter), 1, (Enter), test, (Enter). The user can altemnatively
generate an instruction generating instruction (GOSUB
62000) by typing the specifications 5, (Enter), 1, (Enter), 1,
(Enter), 1, (Enter), (Enter); the instruction generating
instruction GOSUB 62000 can self-generate a GOSUB
62000 when the FLAG is preset to 1. The above specifica-
tions will generate a BASIC program SAMPLE.BAS after
the user exits the program generator by typing in 6, (Enter):
1 PRINT “test”

2 GOSUB 62000

which can be executed directly from the program generator
and, thus, never needs to be seen by the user. This example
demonstrates that the user does not need to remember the
technologies represented by the keyword, PRINT, and the
address 62000, whose number theoretically could be unlim-
ited. All the multiple-choice and text questions in the pro-
gram generator are in human language, be it English,
Chinese, German, Korean, etc.

Instructions 62000 and 62002 represent a small section of
the whole instruction generating set, which is provided by
the manufacturer, invisible to the user and generally trans-
ported without the need to know its contents. Here, it is
shown that when the FLAG is set to 0, the instruction, 1
PRINT “test”, is generated, and when the FLAG is 1, the °
instruction generating instruction, 2 GOSUB 62000, is gen-
erated. Furthermore, since the specifications are easily
handled by the computer, the software system can write its
own update and documentation programs by automatically
constructing the update generating set and the document
generating set, which can replace the instruction generating
set of the program generator to produce respectively the
update (or conversion) generator and the document genera-
tor.

For example, an update program can be constructed by
replacing instruction 62000 through merging or chaining by
62000 PRINT #1, 3,7, 1, A$
which is just one instruction of the entire update generating
set and where 3, 7 and 1 are the specification for generating
the PRINT instruction in a new program generator, which is
equivalent to a new computer language. Then, the old
specifications for the old generator when being fed into this
update program can be automatically converted or updated
to the specifications of the new generator. The update
generating set can generally be constructed automatically by
the software system. Similarly, when the instruction gener-
ating set or the instruction 62000 is replaced through merg-
ing or chaining by the documentation generating set or the
instruction
62000 LPRINT “Print the statement”;A$; on the screen.”

5,485,601

11

the program generator has been converted to a document
generator, which explains the meaning of the old specifica-
tions 1, 1, 1, and A$, or the new specifications 3,7, 1 and A$.
The document generating set is not unique and can be
provided by the original manufacturer of the system, or more
likely, the user. The source code is inadequate as a program
documentation. The document generating set can even take
into consideration program logic and objectives and, there-
fore, is far more flexible and effective than the source code.
The importance of documentation can be seen from the fact
that modem life science deals primarily with the documen-
tation of the DNA sequences.

A program instruction of a software program is generated
by calling a subroutine which can print a program instruc-
tion or instructions into the file for storing the program to be
generated. This instruction generating feature is already
commonly known in program generators and is not a novel
feature of this invention. The following example given in
BASIC language will generate the instruction 100 PRINT X.
10 GOSUB 1000
1000 PRINT #1, “100 PRINT X”

1010 RETURN

The way to generate an instruction generating instruction
is by calling a subroutine (instructions 2000-2010 below)
which can print a subroutine calling instruction (GOSUB
10000) into the file for storing the program to be generated.
The combination of instructions for generating a program
instruction which can generate an instruction is a novel
feature of the self-generating software system and can be

illustrated in BASIC as the following:
20 GOSUB 2000

1000 PRINT #1, “100 PRINT X”
1010 RETURN

2000 PRINT #1, “10 GOSUB 1000”
2010 RETURN

The above instruction numbers 1000 and 2000 must be
prespecified, but will never need to be known by users. Once
the self-generating system has been setup, instruction 2000
can be called from the generating program to generate
instruction 10 in the previous example, which in turn can be
used to generate instruction 100.

The set of subroutines which can generate other instruc-
tions (instructions within PRINT #1) are kept together and
are to be transported from programs to programs through
selective copying, chaining, and/or merging instructions.
This is a novel feature in the self-generating software system
and can be illustrated rising BASIC as the following:

2 CHAIN MERGE “INSTRUCTION__GENERATING__

SET, 1000, 10000
which can be transported to the generated program by
calling the subroutine 3000 by instruction 40 as in the
following:

40 GOSUB 3000
3000 PRINT #1, “2 CHAIN MERGE”+CHR$(34)+“IN-

STRUCTION__GENERATING__SET"+CHRS$(34)+",

1000, 10000
3010 RETURN
where CHRS$(34) represents a quotation mark inside the real
quotation marks, and the file “INSTRUCTION__GENER-
ATING__SET” contains the set of instruction generating
subroutines, which occupies instruction numbers 1000 to
10000.

To summarize the system components, the features
needed for selfgeneration are program instructions, instruc-
tions which can call instruction generating subroutines,
instruction which can call subroutines which can generate
instructions which can call subroutines in the program being

10

20

25

30

35

40

45

50

55

60

65

12

generated, the set of instruction generating subroutines, and
instructions for transporting and/or generating the above set
of instruction generating subroutines. Additionally, the self-
generating software system consists of specification genera-
tors, program generators, update generators, document gen-
erators, application programs, utility programs, external
common files, and specification files for all the programs and
generators with the possible exception of the instruction
generating set, the section of a program generator containing
the set of instruction generating subroutines, which are
represented by instructions 1000 to 10000 in the above
example.

Mother essential requirement in a self-generating soft-
ware system is that the instruction generating set in the
program generator must contain the full machine instruction
set (and other useful subroutines) for self-generation. This
property of self-generation, in which a complex whole
system containing the full machine instruction set generates
another equally complex whole system, is novel and unique
among man-made objects. It can be described as self-
generating cell technology The self-generating cell is as
complex as the whole generated system, which is originated
from the cell. In self-generating software cell, all the pro-
grams are generated by feeding specification files, which are
created by specification generators, into program generators.
Containing problem specification, the specification file is
designed to be independent of technology and is intended to
last forever.

The concept of the self-generating cell enables multicel-
lular design, which through semi-conserved self-generation
of the cell with the help of extermal common files can
multiply complexity by many orders of magnitude to form,
for example, a self-generating artificial neural network or an
electronic brain.

Finally, the whole self-generating system should be able
to switch automatically among different computing levels.
Examples of computing levels are the machine, the operat-
ing system, the computer language, and the application
levels. When the whole system can switch freely among
these levels, the user need not know how to switch com-
puting levels during operation and, thus, is spared having to
learn this particular aspect of the current computer technol-
ogy.

There does not seem to be any patented prior art software
systems which will never become obsolete. It appears that
the completely automated self-generating software system
and the objects which it tries to achieve are original and
novel.

It should be apparent from the foregoing description of
the invention, in the form of the self-generating software
system or cell, that it will fulfill all the objects attributable
thereto, and the invention shall not be limited to software.
The invention could be applied to hardware, firmware,
and/or software combinations. While the preferred embodi-
ments of the invention have been illustrated and described,
it is to be understood that the actual hardware, firmware
and/or software system is not limited to the precise illustra-
tions herein disclosed and the right is reserved to all changes
and modifications coming within the scope of this com-
pletely novel invention as defined by the appended claims.

I claim:

1. A completely automated, technology-independent, non-
obsolescent, self-generating software, firmware, and/or
hardware system or cell, which can self-generate equally
complex systems or cells, comprising:

an initial program generator made of an instruction gen-
erating set appended to an initial specification gener-

5,485,601

13

ating section, specification files, which record the exact
keystrokes inputted when answering, preferably
human-language, tree-structured multiple-choice and
text questions posed by said program generator;

means for generating said initial program generators, said
instruction generating set, a null set, a document gen-
erating set, an update generating set for updating speci-
fication files to the said initial program generator, and
an external common file, when the corresponding said
specification files are fed into said initial program
generator,

means for automatically creating new specification gen-
erating sections, program generators, document gener-
ating sets, updating generating sets, common files by
said initial program generator;

means for self-generation of program generators, thus,
allowing users to modify the generators according to
their own desires, in particular, making the generators
to communicate with users in their native human lan-
guages;

means for semi-conserved self-generation with the aid of
external common files by self-generating program gen-
erators;

means for automatically appending said null set, said
instruction generating set, document generating sets,
and update generating sets to program generators;

means for automatically switching among different com-
puting levels; and

15

20

25

14

means for multiple pass program generation from multi-
level specification files and for documentation and
update of multi-level specification files.

2. The system or cell of claim 1 wherein said instruction
generating set being technology-dependent and containing
all the necessary technology-dependent information of the
system or cell, but being always usable, particularly during
self-generation, auto-documentation, and auto-updating,
without the necessity of the internal contents of the said
instruction generating set being visible to users.

3. The system or cell of claim 1 wherein said instruction
generating set having the capability of enabling program
generators to preset a flag to direct the self-generation of an
instruction generating instruction, which is a subroutine
calling instruction and is capable of generating instructions
in generated program generators, without the necessity for
users to know any technical information, such as the
addresses of the generating subroutines, formats of instruc-
tions, etc. in said instruction generating set.

4. The system or cell of claim 1 wherein said instruction
generating set having the capability of enabling program
generators to preset flags to direct the generation of-docu-
ment generating sets and update generating sets, and to
direct the automatic appending through chaining, merging,
and/or copying of said null set, said instruction generating
set, document generating sets, or update generating sets to
program generators, without the necessity for users to know
any technical information.

* %k ok ok ok

	Tiffs to PDF

